Synthesis and biological activities of 4-trifluoromethylindole-3-acetic acid: a new fluorinated indole auxin.

نویسندگان

  • Masato Katayama
  • Yuko Masui
  • Eiji Kageyama
  • Youichi Kawabata
  • Kozo Kanayama
چکیده

In our studies on the development of new promoters for the root formation of tree cuttings, 4-trifluoromethylindole-3-acetic acid (4-CF(3)-IAA), a new fluorinated auxin, was synthesized via 4-trifluoromethylindole and 4-trifluoromethylindole-3-acetonitrile by using 2-methyl-3-nitrobenzotrifluoride as the starting material. As a control compound for comparing biological activities, 4-methylindole-3-acetic acid (4-CH(3)-IAA) was also synthesized by using 2,3-dimethylnitrobenzene as the starting material. The biological activities of these compounds were compared by three bioassays with those of indole-3-acetic acid and 4-chloroindole-3-acetic acid (4-Cl-IAA), which, like 4-CF(3)-IAA and 4-CH(3)-IAA, has a substituent at the 4-position of the indole nucleus. 4-CF(3)-IAA showed strong root formation-promoting activity with black gram cuttings which was 1.5 times higher than that of 4-(3-indole)butyric acid at 1x10(-4) M. 4-CH(3)-IAA, however, only weakly promoted root formation in spite of its strong inhibition of hypocotyl growth in Chinese cabbage and promotion of hypocotyl swelling and lateral root formation in black gram. On the other hand, 4-CF(3)-IAA demonstrated weaker activities than 4-CH(3)-IAA and 4-Cl-IAA in these two bioassays.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of Exogenous Application of Auxin on Antioxidant Enzyme Activities in Rice Under Salt Stress

Phytohormones such as auxin are known to be involved in alleviating the detrimental effects of salinity by modulating the activity of enzymatic antioxidants and improving antioxidant system, which help in sustaining plant growth. The present study envisaged revealing the role of exogenous application of indole-3-acetic acid (IAA) in improving defense mechanisms in two genotypes (FL485 and IR29,...

متن کامل

Growth of Parthenocissus tricuspidata tissue cultured on media containing aza analogues of indole-3-acetic acid & indole-3-propionic acid.

Several years ago, Robison and Robison (5) reported the synthesis of some compounds of biological interest. Among these were 7-aza-indole-3-acetic acid (AIAA) and 7-aza-indole-3-propionic acid (AIPA), aza analogues of indole-3-acetic acid (IAA), and indole-3-propionic acid (IPA). It was apparent that such compounds might be anti-metabolites of auxin, in the same manner that azaguanine has prove...

متن کامل

Biosynthesis of auxin by the gram-positive phytopathogen Rhodococcus fascians is controlled by compounds specific to infected plant tissues.

The role and metabolism of indole-3-acetic acid in gram-negative bacteria is well documented, but little is known about indole-3-acetic acid biosynthesis and regulation in gram-positive bacteria. The phytopathogen Rhodococcus fascians, a gram-positive organism, incites diverse developmental alterations, such as leafy galls, on a wide range of plants. Phenotypic analysis of a leafy gall suggests...

متن کامل

Regulation of auxin homeostasis and gradients in Arabidopsis roots through the formation of the indole-3-acetic acid catabolite 2-oxindole-3-acetic acid.

The native auxin, indole-3-acetic acid (IAA), is a major regulator of plant growth and development. Its nonuniform distribution between cells and tissues underlies the spatiotemporal coordination of many developmental events and responses to environmental stimuli. The regulation of auxin gradients and the formation of auxin maxima/minima most likely involve the regulation of both metabolic and ...

متن کامل

Long-term inhibition by auxin of leaf blade expansion in bean and Arabidopsis.

The role of auxin in controlling leaf expansion remains unclear. Experimental increases to normal auxin levels in expanding leaves have shown conflicting results, with both increases and decreases in leaf growth having been measured. Therefore, the effects of both auxin application and adjustment of endogenous leaf auxin levels on midrib elongation and final leaf size (fresh weight and area) we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioscience, biotechnology, and biochemistry

دوره 72 8  شماره 

صفحات  -

تاریخ انتشار 2008